
Guidelines for Library Design 18.05.2011

CoDeSys Technical Workgroup
Guidelines.doc Page 1 of 29

Guidelines for Library Design

Document Version 1.52

Last Update: 18.05.2011

CONTENTS

1 GENERAL 3

1.1 Project Information 3
1.2 Library Categories 6
1.3 Template Libraries and Placeholder Concept 6
1.4 External Libraries and Placeholder Concept 7
1.5 Placeholder Concept and Device Description 8
1.6 Library Reference Summary 8
1.7 Version History 8

2 REQUIREMENT SPECIFICATION 9

3 INTERFACES 9

3.1 General 9
3.2 Variable names 9

3.2.1 Variable names in CoDeSys V3.x libraries 9
3.3 User defined data types (DUT) 9

3.3.1 DUTs in CoDeSys V3.x libraries 9
3.4 Functions, function blocks, programs (POU) 9

3.4.1 POUs in CoDeSys V3.x libraries 9
3.5 Visibility of project items in CoDeSys V3.x libraries 9
3.6 Version POU 9
3.7 CoDeSys Project 9
3.8 Behaviour- and interface model of function POUs 9
3.9 Error handling 9

3.9.1 Function Blocks 9
3.9.2 Functions 9

3.10 Lists and arrays 9
3.11 GetProperty function 9

4 FUNCTION DESCRIPTION AND EXAMPLES 9

Guidelines for Library Design 18.05.2011

CoDeSys Technical Workgroup
Guidelines.doc Page 2 of 29

5 HELP 9

6 TEST- AND CERTIFICATION PROJECTS 9

7 RELEASE 9

APPENDIX A: SYMBOL CONFIGURATION 9

A.1 Filtering of symbols inside the Symbol Configuration 9
A.2 Limit the number of symbols by proper library design 9

CHANGE HISTORY 9

Guidelines for Library Design 18.05.2011

CoDeSys Technical Workgroup
Guidelines.doc Page 3 of 29

1 General

One area of operation of the CoDeSys Automation Alliance Technical Workgroup is the creation of
non-ambiguous library specifications. Libraries only specified by their interfaces might show different
behaviour in different implementations (Example: Reading from a serial interface: what happens if
there are less characters than have been requested). It might happen that CoDeSys applications
basing on such libraries do not work on each target system.

In order to avoid these problems it is necessary to specify libraries non-ambiguously and completely,
namely by the definition of:

- Interfaces

- Function / behaviour

- Help texts

- Examples

- Test and certification procedures

Simple hardware-independent internal libraries additionally can be implemented open accessibly.

The specification of the libraries must be downward compatible with previous version. Extensions
of specifications or clarifications of non-ambiguous definitions are possible.

Ambiguities, detected by the participants of the work group during the implementation, should be
reported to and gathered by the group and presented during the next workshop, and – if necessary –
they should get reworked.

It is planned to established a Newsgroup forum, subdivided into areas of operation and documents,
where each member of the workshop can make comments.

1.1 Project Information

A short description of the library is to be entered in the library project information.

For CoDeSys V3.x libraries the following entries in the Project Information are obligatory:

• Company: For templates and interface conventions as an author identifier should be entered:
„CAA<space>Technical<space>Workgroup“. In case of target-dependent implementations
the respective company name must be entered
(e.g. „3S<space>Smart<space>Software<space>Solutions<space>GmbH“).

• Title: Library name (e.g. “CAA Callback”). In case of a target-dependent library the target
name (e.g. “CoDeSys SP Win V3”) should be appended to the library name.

• Version: 3.<specification version>.<release version>.<implementation version>
(see also 3.5).

• Categories: At least one of the subcategories described below should be entered.

• Namespace: The library prefix should entered as Default namespace.

• Author: Company name of the author (see „Company“).

• Description: Short description of the library.

Guidelines for Library Design 18.05.2011

CoDeSys Technical Workgroup
Guidelines.doc Page 4 of 29

Hierarchy of the library categories

Guidelines for Library Design 18.05.2011

CoDeSys Technical Workgroup
Guidelines.doc Page 5 of 29

• Properties: The following properties should be inserted

Property name (Key,Type) Description (Value)

SpecVersion (version) A reference on the specification version provided by the
CoDeSys-Technical Workshop.

Depends on RTS (bool) Describes the dependency on the runtime system.

Depends on PS (bool) Describes the dependency on the programming system.

Licensed (bool) The library should be licensed

Documentation (string) The path and file name of the specification file

LanguageModelAttribute (string) Only access over the namespace (‘qualified-access-only’)

ShowSmartCodingInfo (bool) True | False

ContainerLibrary (bool) True | False

InterfaceLibrary (bool) True | False

• The option for automatic generation of POUs for accessing the project properties should not
be activated.

Guidelines for Library Design 18.05.2011

CoDeSys Technical Workgroup
Guidelines.doc Page 6 of 29

1.2 Library Categories

There are the following main categories for CAA libraries:

• Application: Libraries of this category are target-independent and are explicitly to be inserted
in a project by the user. They are implemented matching the CAA rules and are sorted in
subcategory „Application|CAA“.

• Intern: Libraries of this category get automatically inserted in a CoDeSys 3.x project by
certain CoDeSys 3.x extensions (plugin) and in normal case should not be inserted or
removed by the end user. They are implemented conforming the CAA rules and are sorted in
subcategory „Intern|CAA“.

• System: Libraries of this category directly depend on the runtime system or implement parts
of the runtime system. Usually they are not directly inserted in the CoDeSys 3.x project, but
are referenced by other libraries. They are implemented conforming the CAA rules and are
sorted in subcategory „System|CAA“.

• Target: Libraries of this category are not target-independent and are a vendor-specific
implementation of CAA specifications. Below the main category „Target” each vendor creates
a subcategory named like his company. Below the vendor category a further subcategory
should be created for each target, named like the target. All libraries for this target should get
assigned the respective category in their project information. They are to be implemented
conforming the CAA rules and are sorted in subcategory
„Target|<vendorname>|<targetname>|CAA“.

Each library category is defined in a xml-file. An appropriate template
(LibraryCategoryBase.libcat.xml) is provided with the current document.

1.3 Template Libraries and Placeholder Concept

For each target-specific library a corresponding template library must be created, which only
contains the interfaces and data types of the real library.

To enable that target-independent libraries can base on target-specific libraries without any problems,
a placeholder concept has been established in CoDeSys V3.x. It guarantees a strict versioning of
library scopes and thus – in contrast to CoDeSys V2.3 – a more trouble-free interaction of libraries of
different derivations. Each project or library referencing a target-dependent library does not directly
use this target-dependent library but a corresponding template library defining the same interfaces
but not containing an implementation. This allows a syntactical check. At the same time a library
placeholder is defined. When the new library is used for a definite target by the user, the resolution of
the placeholder will be done according to an appropriate definition in the target description and thus a
definite version of the underlying library will be found.

The name of such a kind of Library should extended by the term “Template”.

Procedure: When inserting a library use tabulator „Placeholder“ and define a placeholder. For correct
placeholder names see document „Prefix.pdf“. Then in „Default Library“ select a template library.

Guidelines for Library Design 18.05.2011

CoDeSys Technical Workgroup
Guidelines.doc Page 7 of 29

1.4 External Libraries and Placeholder Concept

A library witch is implemented as a part of the runtime system (in ANSI C or C++) is called a external
library. So each external library is a target-specific library and the placeholder concept should used to
handle the target dependencies. Each project or library referencing a external library does not directly
use this external library but a corresponding special template library defining the same interfaces but
not containing an implementation. For all functions and function blocks the build property “External
implementation” should be set.

The name of such a kind of Library should extended by the term “External”.

Guidelines for Library Design 18.05.2011

CoDeSys Technical Workgroup
Guidelines.doc Page 8 of 29

1.5 Placeholder Concept and Device Description

Each placeholder must be resolved in the target description: In section „placeholder-libraries“ there
must be an entry „library-management“, where for each placeholder a description must be available.

1.6 Library Reference Summary

The rules for referencing other libraries are described below:

• A library without any implementation is called an interface library.
This kind of libraries can be extended in a code compatible way only.

• An interface library is referenced without a placeholder but with a newest constrain.

• All other libraries are referenced with a placeholder.
The version constraint of the default lib is newest.

1.7 Version History

The comment in front of the declaration part of the function “GetSupplierVersion” is the place to
enter the version history.

Guidelines for Library Design 18.05.2011

CoDeSys Technical Workgroup
Guidelines.doc Page 9 of 29

2 Requirement Specification

The Requirement Specification which should serve as a guide for a workgroup when issuing a library
specification, and which is to be created in the workshop, should define the following items:

- Target: Which task should be worked out.

- Terms and Definitions

- Models (state transitions etc.)

- List of desired Functionality

- Constraints (standards, patents, norm-specific notation, data types, word widths etc.)

- Dependencies (other libraries, runtime system classes, language scope (CoDeSys Version))

- Library name and -prefix

Guidelines for Library Design 18.05.2011

CoDeSys Technical Workgroup
Guidelines.doc Page 10 of 29

3 Interfaces

3.1 General

The file name of a library which has been defined in the CAA Technical Workshop should be “CAA_”
followed by a short expressive name.

For each library name a prefix is to be used, consisting of a few capital letters, the library prefix. On
the CAA-homepage a table is published, containing all library prefixes known to the CAA. CAA
members can publish their proprietary library prefixes there. In CoDeSys V3.x libraries the library
prefix is used as default namespace.

The prefix – without underscore – must not consist of a word reserved by the IEC standard. Thus for
example the following would not be allowed: COS_, DT_, ABS_, etc.

The prefix – without underscore – must not consist of the name of an already defined data type
(ALIAS, ENUM, STRUCT,…). Thus for example it is not allowed to use prefix „TICK_“ for library
CAA_TICK.lib, because in library CAA_Types.lib already an alias “TICK” is defined. If this rule is not
observed, compile errors will result in CoDeSys 3.x when applying the other prefix-/namespace rules.

All library objects are to be organized in folders. On top level always use the complete library name,
subfolders should be established.

In each folder there might exist an additional folder with name „internal“, which might contain
internal auxiliary functions and function blocks only used within the library.

Example:

Comments are to be done in English.

The specifications should comply with IEC61131-3. As few as possible CAA-specific constructs
should be used.

When using pointers, take care that a pointer with value 0 never will cause a system crash but at
most an error message.

3.2 Variable names

The naming of variables preferably should be unique in all libraries, following the Hungarian
notation:

For each variable a meaningful, preferably short, English name should be used, the base name.
Always the first letter of a word of the base name is to be written uppercase, the remaining letters
lowercase. (Example: FileSize). If required, additionally a translation file for other languages can be
created.

The base name is to be prefixed (lowercase) corresponding to the data type of the variable. See the
following table:

Guidelines for Library Design 18.05.2011

CoDeSys Technical Workgroup
Guidelines.doc Page 11 of 29

Data type Lower limit Upper limit Length Prefix Flag Note

BOOL FALSE TRUE 1/8 Bit x1 0x01

 b reserved

 n reserved

 f reserved

BYTE Bitstring, not for arithm. operations 8 Bit by 0x02

WORD Bitstring, not for arithm. operations 16 Bit w 0x03

DWORD Bitstring, not for arithm. operations 32 Bit dw 0x04

LWORD Bitstring, not for arithm. operations 64 Bit lw -

SINT -128 127 8 Bit si 0x06

USINT 0 255 8 Bit usi 0x07

INT -32.768 32.767 16 Bit i 0x08

UINT 0 65.535 16 Bit ui 0x09

DINT -2.147.483.648 2.147.483.647 32 Bit di 0x0A

UDINT 0 4.294.967.295 32 Bit udi 0x0B

LINT -263 263 - 1 64 Bit li -

ULINT 0 264 - 1 64 Bit uli -

REAL Single-precision IEEE 754 32 Bit r 0x0C

LREAL Double-precision IEEE 754 64 Bit lr -

STRING 8 Bit per character s -

WSTRING 16 Bit per character ws -

TIME T#0 T#49d17h2m37s295ms 32 Bit t 0x0D ms

LTIME T#0 T#213503d23h34m33s709ms55
1us615ns 64 Bit lt - ns

TIME_OF_DAY TOD#0:0:0.0 TOD#23:59:59.999 32 Bit tod 0x0E ms

DATETIME DT#1970-1-1-0:0:0 DT#2106-2-7-6:28:15 32 Bit dt 0x0F s

DATE D#1970-1-1 D#2106-2-7 32 Bit dat 0x11 d

ENUM 16 Bit e 0x12

INTERFACE I<Interface> I
Interface
reference itf<instance> itf

REFERENCE r<Prefix><Variable> r

1 For BOOLean variables deliberately „x“ is chosen as prefix in order to get a distinction against BYTE
and to meet the viewpoint of an IEC programmer (compare addressing %IX0.0).

Guidelines for Library Design 18.05.2011

CoDeSys Technical Workgroup
Guidelines.doc Page 12 of 29

Examples:

bySubIndex: BYTE;

sFileName: STRING;

udiCounter: UDINT;

Please keep in mind that further base data types are defined in the library CAA_Types. These are
data types depending on the platform properties (usually on the size of the natural processor word).

In case of nested declarations the prefixes are concatenated according to the sequence of their
declarations.:

Type Lower limit Upper
limit

Memory
space

Prefix Flag Note

POINTER p 0x13

ARRAY a 0x14

Example:

pabyTelegramData: POINTER TO ARRAY [0..7] OF BYTE;

Function block instances and variables of user-defined data types as a prefix have to get a short
identifier for the FB- resp. data type name (Example: sdo).

Example:

sdoReceivedTelegram: CAN_SDOTelegram;

TYPE CAN_SDOTelegram : (* prefix: sdo *)

STRUCT

 wIndex:WORD;

 bySubIndex:BYTE;

 byLen:BYTE;

 aby: ARRAY [0..3] OF BYTE;

END_STRUCT

END_TYPE

Local Constants (c) have to start with the constant-prefix c and an additional underscore, followed
by the type-prefix and the variable name.

Example:

VAR CONSTANT

 c_uiSyncID: UINT := 16#80;

END_VAR

For Global Variables (g) and Global Constants (gc) an additional prefix+underscore is to be
appended:

Examples:

VAR_GLOBAL

Guidelines for Library Design 18.05.2011

CoDeSys Technical Workgroup
Guidelines.doc Page 13 of 29

 CAN_g_iTest: INT;

END_VAR

VAR_GLOBAL CONSTANT

 CAN_gc_dwExample: DWORD;

END_VAR

3.2.1 Variable names in CoDeSys V3.x libraries
The composition of variable names in CoDeSys V3.x corresponds to the description in chapter 3.2
except that global variables and constants do not need a library prefix, because those function will be
replaced by the library namespace.

Example:

g_iTest: INT; (declaration)

CAN.g_iTest (usage, call in program)

3.3 User defined data types (DUT)

The name of each structure data type should consist of the library prefix (e.g. CAN), an underscore
and a short meaningful description (e.g.: SDOTelegram) of the structure. The corresponding prefix for
defined variables of this structure should follow as a comment directly behind the colon.

Example:

TYPE CAN_SDOTelegram : (* prefix: sdo *)

STRUCT

 wIndex:WORD;

 bySubIndex:BYTE;

 byLen:BYTE;

 abyData: ARRAY [0..3] OF BYTE;

END_STRUCT

END_TYPE

Enumeration values should start with the library prefix (e.g.: CAL), followed by an underscore and
the identifier in capital letters.

Regard that in previous CoDeSys versions ENUM values > 16#7FFF caused errors, because they did
not automatically get converted into INT. For this reason ENUMs always should be defined with
correct INT values.

Example:

TYPE CAL_Day :(
 CAL_MONDAY,
 CAL_TUESDAY,
 CAL_WEDNESDAY,
 CAL_THIRSDAY,
 CAL_FRIDAY,
 CAL_SATURDAY,
 CAL_SUNDAY);

Declaration:

eToday: CAL_Day;

Guidelines for Library Design 18.05.2011

CoDeSys Technical Workgroup
Guidelines.doc Page 14 of 29

3.3.1 DUTs in CoDeSys V3.x libraries
In case of DUT names in CoDeSys V3.x libraries do not use a prefix because its function is taken by
the library namespace. For the exact use of the namespace concept there is a need for a so called
attribute. In front of the definition of a DUT the “{attribute 'qualified_only'}” phrase should
used.

Also the enumeration values are defined without library prefix:

Example (from a library with namespace CAL):

{attribute 'qualified_only'}
TYPE Day :(
 MONDAY,
 TUESDAY,
 WEDNESDAY,
 THIRSDAY,
 FRIDAY,
 SATURDAY,
 SUNDAY);

Declaration:

eToday: CAL.Day;

Usage in application:

IF eToday = CAL.Day.MONDAY THEN

3.4 Functions, function blocks, programs (POU)

Identifiers of functions, function blocks and programs should be composed of the library prefix (e.g.:
CAN), an underscore and a meaningful, preferably short name of the POU (e.g.: SendTelegram). Like
for variables always the first letter of a word of the base name should be written uppercase, the
remaining ones lowercase. It is recommended to compose the name of the POU of a verb and a
substantive.

Example:

FUNCTION_BLOCK CAN_SendTelegram (* prefix: canst *)

In the declaration part a short description of the function block should be added as a comment. Also
all inputs and outputs should be supplemented with comments. In case of function blocks the prefix
for defined instances should be inserted as a comment directly behind the name.

Actions basically get no prefix; only the identifiers of actions which are only called internally, i.e. by
the pou itself, start with „prv_“. Libraries which might be implemented as external libraries must not
contain actions except for those identified by „prv_“. Actions cannot be implemented in ANSI-C for
CoDeSys 2.3.

Each function – for the reason of compatibility with previous CoDeSys versions - must have at least
one parameter. External functions must not use structures as return values.

3.4.1 POUs in CoDeSys V3.x libraries
For POU names in CoDeSys V3.x libraries the library prefix is not needed because its function is
taken by the library namespace.

For the naming of methods the same rules apply as for actions. Possible inputs of methods should
be provided with English comments. Also a short description of the method should be contained
added to the declaration. For methods there are no restrictions concerning the ability to get
implemented in external or internal libraries.

Interface names should start with letter „I“, e.g.:

ICANDevice

Guidelines for Library Design 18.05.2011

CoDeSys Technical Workgroup
Guidelines.doc Page 15 of 29

3.5 Visibility of project items in CoDeSys V3.x libraries

Sometimes there is a need for some helper functions or variables. These items should be not
members of the input assistant lists and the intellisence lists of CoDeSys V3.x. Regarding this
requirement there is a need for another so called attribute. In front of the definition of such items the
“{attribute 'hide'}” phrase should used.

3.6 Version POU

Each library should have a function with exactly one BOOLean dummy input parameter xDummy with
name <libraryprefix>_GetSupplierVersion, returning a WORD describing the implementation
version. This version information is defined by the vendor (recommendation: higher-value byte:
release version2; lower-value byte: implementation version3).

Example:

Function return value: 522 = 16#020A

Release version number: 2

Implementation version number: 10

The specification version number4 is set up in the library as a global constant of type BYTE with
name5

<libraryprefix>_gc_byVersion: BYTE;

Further on a global constant of type BYTE with name5
<libraryprefix>_gc_Version_<specification version>: BYTE;

is to be defined. This constant can be used for creating compile errors in case a library with wrong
version is used. For CoDeSys V 3.x the library prefix is not needed because the namespace takes its
function.

Explanation:

The interface will change only if the specification version gets changed. Thus it can be defined as a
global constant. The implementation version however usually changes without any change of the
interface. Due to the fact that the implementation can be done as an external library in the runtime
system, the implementation version must be retrieved via a function call.

3.7 CoDeSys Project

Together with each library specification a CoDeSys library file is to be published, containing all POUs
(as pure interface definitions, empty implementation part), data structures, enumerations and global
variables.

Used libraries should be included in the interface project, so that they get bound automatically as
soon as the library gets included in a project.

2 Release version; a tested and released version should get a release-version number by the vendor.
3 Each source change should be followed by a change of the implementation version number
4 Version of the library specification; defined by the CAA-Workshop
5 In case of CoDeSys V3.x-libraries no library prefix + underscore is used

Guidelines for Library Design 18.05.2011

CoDeSys Technical Workgroup
Guidelines.doc Page 16 of 29

3.8 Behaviour- and interface model of function POUs

Actions whose execution time depends on external devices (e.g. reading from the serial interface) or
is strongly influenced by the size of parameters (e.g. 64kByte CRC), should be defined as function
blocks (FB) with asynchronous processing, i.e. distributed on several cycles.

2 models for start behaviour:

1. xExecute edge controlled

Rising edge: action start

At a rising edge the POU takes action. In standard case the inputs get copied locally,
whereby a modification of the inputs during action has no effect. Any different
behaviour of the inputs must be documented.

Falling edge: reset of the outputs

If the falling edge occurs before the POU has terminated its action, the outputs will
work as usual and will not be reset until either the action is terminated or aborted
(xAbort), or an error occurs. In this case the appropriate values (xDone, xError,
eError) must be available at the outputs for exactly one cycle.

Optional input xAbort: stops the action

If this input is TRUE, the action will be stopped immediately and all outputs will be set
to the initial values. In case of abort the xAborted output is set to true after abort is
done.

Optional input udiTimeLimit: time after which the active FB should return

This input shows how long (µs) a FB (whose total processing takes a considerable
time) may work per call before returning. Value 0 indicates that there is no time limit.

Optional input udiTimeOut: time after which the active FB should abort with an error

This input indicates after which time (µs) – measured from action start - a FB (e.g.
waiting for an external acknowledgement) will abort the execution with a timeout
error.

These inputs, if used, always are to be declared first, namely in the above shown order from
up to down.

Guidelines for Library Design 18.05.2011

CoDeSys Technical Workgroup
Guidelines.doc Page 17 of 29

The following model cases more detailed specify the functionality of the inputs and outputs:

Error-/Abort-free execution:

Error-/Abort-free execution with falling edge of xExecute while busy:

Abort:

Guidelines for Library Design 18.05.2011

CoDeSys Technical Workgroup
Guidelines.doc Page 18 of 29

Error case:

Error case with falling edge of xExecute while busy:

Guidelines for Library Design 18.05.2011

CoDeSys Technical Workgroup
Guidelines.doc Page 19 of 29

2. xEnable level-controlled

TRUE: Action running

Per default any changes at the inputs effect the current action. Any different
behaviour must be documented.

FALSE: Action stopped, Outputs xDone, xBusy, xError, eError are reset

Predefined outputs:

 xDone: Action terminated successfully

 xBusy: function block is active

 xError: an Error occured

These outputs, if used, always are to be declared first, namely xDone before xBusy, if
applicable followed by the error outputs xError and eError.

POUs may use these inputs and outputs only in connection with the above described function.

In the descriptions of the libraries the functionality of the above mentioned default inputs and
outputs is not to be described in order to avoid multiple specifications.

An example project „BehaviourModel.pro“, containing function blocks with the above described
behaviour, will be published together with the current version of this guidelines.

For CoDeSys V3.x there is a library CAA_BehaviourModel.library, uniquely implementing the
behaviour model. Also there is the project template CAA_Template.library and
CAA_Template_Extern.library, extending the behaviour model for the particular usage. All three
libraries are published with the current guideline document and are part of the CoDeSys V3.x setup.

CAA_BehaviourModel.library FBs:

ETrig: edge triggered

ETrigA: edge triggered with abort input

ETrigTo: edge triggered with time out

ETrigTl: edge triggered with time limit

ETrigToA: edge triggered with time out and abort input

ETrigTlA: edge triggered with time limit and abort input

ETrigToTl: edge triggered with time out and time limit

ETrigToTlA: edge triggered with time out, time limit and abort input

LTrig: level triggered

Guidelines for Library Design 18.05.2011

CoDeSys Technical Workgroup
Guidelines.doc Page 20 of 29

3.9 Error handling

For each library all error IDs created by the library modules – not by instantiated modules of
referenced libraries – are to be specified and listed. For this purpose each library should define an
enumeration <libraryprefix>_ERROR. Components of this enumeration are “<libraryprefix>_<error
description>”. In case of CoDeSys V3.x libraries the prefix is not to be used, because its functionality
is taken by the library namespace.

Via the library prefix also error ranges are to be assigned to a library. These error ranges are divided
up into a default range (first part) and a vendor-specific range (second part). The ranges are limited
by the following enumeration values defined in each library: <libraryprefix>_FIRST_ERROR,
<libraryprefix>_FIRST_MF and <libraryprefix>_LAST_ERROR. These limit values do not describe
errors. They are allocating values within the enumeration which thereby are not any longer available
as error numbers. Between <libraryprefix>_FIRST_ERROR and <libraryprefix>_FIRST_MF the
default errors are to be defined, between <libraryprefix>_FIRST_MF and <libraryprefix>
_LAST_ERROR the vendor-specific errors.

Additionally each error enumeration should contain <libraryprefix>_NO_ERROR with value 0.

Each library using function blocks with input udiTimeOut in the error enumeration additionally should
contain a symbol named <libraryprefix>_TIME_OUT with value <libraryprefix>_FIRST_ERROR+1.
Other libraries must not allocate this value.

If required, manufacturer-specific errors and errors of modules of subjacent layers can be reported by
a collective error number and be diagnosed in detail by another error module.

Guidelines for Library Design 18.05.2011

CoDeSys Technical Workgroup
Guidelines.doc Page 21 of 29

3.9.1 Function Blocks
Each function block should have the following outputs:

 xError (BOOL): FALSE: no error; TRUE: error occurred, module aborts action.

 eError (<libraryprefix>_ERROR): Library-local error-ID (0: no error).

If default inputs (xExecute/xEnable, xAbort, udiTimeLimit, udiTimeOut) are used, these must be
positioned at top of the list of inputs, followed by specific inputs and VAR_IN_OUTs. Further on the
default outputs are to be declared in the following sequence: xDone, xBusy, xError, eError.
Subsequently the specific outputs are to be defined.

3.9.2 Functions
Not each function returns information on an error occurrence (e.g. min, sin etc.). If the return value of
the function should contain information on an error, the following cases are to be distinguished:

1. only the error is returned:
0 means success, another number describes the error-ID.

2. the return value besides the error itself also provides further information:

The function has an input variable peError (POINTER TO <libraryprefix>_ERROR), which
should contain a pointer on a defined error variable. In error case the called function allocates
this variable with the corresponding error value. If the user is not interested in the error
number, he will pass a CAA_gc_pNULL here.

3.10 Lists and arrays

It is recommended to define the first element of a list or of a array as “1”. So any function returning an
index can indicate an error by return value „0“ (according to 3.9).

3.11 GetProperty function

Mainly in case of external libraries describing an interface which gets implemented on multiple
systems with different hardware components, it often happens that e.g. platform A supports a certain
function, not however platform B. In order to be able to use the same interface for both
implementations, the application resp. the layers basing on this interface must have the possibility to
poll the properties/abilities of the implementation and to react correspondingly.

For this purpose the interface libraries should have a function <libraryprefix>_GetProperty, getting
the number of the property to be scanned as a WORD input and returning the property as a DWORD.
For CoDeSys V3.x libraries the library prefix is not to be used, because its functionality is taken by the
library namespace.

The property numbers and the meaning of the return value are defined in the library specification.. If
any property number is scanned which is not known to the implementation, 0 will be returned..

Property numbers as from 16#8001 can be allocated implementation-specifically; regard however that
applications basing on those numbers might be not portable. In order nevertheless to enable the
application to react appropriately, the property number 16#8000 ís reserved for the identification of
the implementation (e.g. “Vendor Platform name”), which is returned as POINTER TO STRING in the
DWORD. Thus the application can check whether the implementation is the expected one and thus
whether the implementation-specific property numbers are available and of meaning.
Implementations not using specific property numbers return 0 on 16#8000.

No enumeration should be defined for the property numbers6. Instead of it is recommended to define
global constants.

6 Explanation: Implementation-specific properties can be defined, which of course cannot be part of
an enumeration available for all implementations.

Guidelines for Library Design 18.05.2011

CoDeSys Technical Workgroup
Guidelines.doc Page 22 of 29

4 Function description and examples

For each library a detailed function description should be issued. It should describe the inputs and
outputs of each particular POU as well as its function (perhaps also via interesting sample cases).

When documenting POUs of type “Function”, a reasonable exemplary variable name is to be used
for the return variable, because the name of the return variable equates the function name.

Data structures, enumerations and global variables are to be documented as well.

All hardware- and system resources, which can be allocated by library modules, must be listed in
the documentation.

Besides the description of the library the document also should contain the following:

- Participants in creating the library (working group)

- Dependencies (used libraries)

- Change history

- perhaps restrictions etc.

If possible, the library description should be rounded off by a comprehensive, documented example,
using as many as possible library modules and illustrating the handling of the library to the user.
Available examples will be published as CoDeSys projects together with library specification.

3S provides a MS Word Template (CAA_lib.dot) usable for the library documentation.

Guidelines for Library Design 18.05.2011

CoDeSys Technical Workgroup
Guidelines.doc Page 23 of 29

5 Help

For each library a help file in chm-format should be created, describing the interfaces and function of
the library.

3S provides an example.

Guidelines for Library Design 18.05.2011

CoDeSys Technical Workgroup
Guidelines.doc Page 24 of 29

6 Test- and certification projects

Test- and certification projects are to be created as CoDeSys projects and to be documented. These
can be used to check whether the libraries work properly.

The test- and certification projects will be published together with the library.

Guidelines for Library Design 18.05.2011

CoDeSys Technical Workgroup
Guidelines.doc Page 25 of 29

7 Release

A release of the library specification is not possible until a complete implementation is available.

Guidelines for Library Design 18.05.2011

CoDeSys Technical Workgroup
Guidelines.doc Page 26 of 29

Appendix A: Symbol Configuration

A.1 Filtering of symbols inside the Symbol Configuration

The symbol configuration editor provides two tools to define a set of symbols which will be exported.
In a first step it is possible to define a set of variables / instances below the Variables node of the
configurator. These Instances will be broken down to its member variables. Each single variable will
be accessible from an external system. To optimize the size of this variable set it is often helpful to
constrain the content of the exported variable set. This can be achieved by selecting some members
of an data type below the Data Types node in the configurator. By such a selection a reduced data
set will be generated. For all instances of the selected data type only the selected members will be
exported.

Limit the number of exported items by using the Data Types section

Guidelines for Library Design 18.05.2011

CoDeSys Technical Workgroup
Guidelines.doc Page 27 of 29

A.2 Limit the number of symbols by proper library design

The number of symbols exported from a library has a major impact on the usability of the symbol
configuration. It is in the responsibility of the developer of an library to limit the number of symbols
which are exported by this library. By applying the following rules, it is possible to develop a library
which only exports the really required symbols.

• Reduce the amount of visible symbols. Use the hide attributes where ever possible.
For example: {attribute ‘hide’} or {attribute ‘hide_all_locals’}

• Constant values should be declared as constant. This type of symbols will never be
exported.

• Reduce the amount of parameters inside the public interface of a function block. Create
lightweight interfaces.

• Use data structures for grouping related parameters. Stand to benefit from the power of
structured data types like struct, array and enum and the composite of them.

• Create a hierarchical set of various well defined small data structures instead of using few
monolithic huge ones.

Example for {attribute ‘hide_all_locals’}

Guidelines for Library Design 18.05.2011

CoDeSys Technical Workgroup
Guidelines.doc Page 28 of 29

Change history

V 0.1 Hilmar Panzer, 3S 12.05.2004 Draft for presentation at 2. Technical Workshop

V 0.2 Hilmar Panzer, 3S 14.05.2004 Changes after 2. Technical Workshop

V 1.0 Hilmar Panzer, 3S 08.07.2004 Changes after 3. Technical Workshop; Ratification

V 1.1 Hilmar Panzer, 3S 09.09.2004 Changes after 4. Technical Workshop

V 1.2 Hilmar Panzer, 3S 25.01.2005 Changes after 5. Technical Workshop

V 1.30 Wolfgang Doll, 3S 17.02.2005 Changes after 6. Technical Workshop

V 1.31 Hilmar Panzer, 3S 24.02.2005 Supplement: local/global constants, global variables

V 1.32 Hilmar Panzer, 3S 20.05.2005 CAA_Type.lib; <prefix>_GetProperty function

V 1.33 Hilmar Panzer, 3S 30.06.2005 Spelling corrections

V 1.34 Wolfgang Doll, 3S 06.07.2005 Prefix data structure/FB without Lib-prefix; CoDeSys-
Library instead of -Project; Formatting

V1.35 Hilmar Panzer, 3S 27.09.2005 Documentation of function return names;
implementation samples behaviour model; ENUM
values > 16#7FFF; at least one parameter for
functions; error returns of functions

V1.36 Hilmar Panzer, 3S 30.09.2005 Behaviour model sample project; external functions
must not return structures

V1.37 Hilmar Panzer, 3S 11.01.2006 Spelling corrections

V1.38 Hilmar Panzer, 3S 25.01.2006 Documentation of allocated resources

V1.40 Hilmar Panzer, 3S 10.04.2006 Changes after 12. Workshop: behaviour model, error
numbers

V1.41 Hilmar Panzer, 3S 30.05.2006 Changes after 13. Workshop (see protocol)

V1.42 Wolfgang Doll, Hilmar
Panzer, 3S

22.08.2006 Changes after 14. Workshop: Library prefix and
namespaces

V1.43 Wolfgang Doll, 3S 07.03.2007 Changes after 15. Workshop: CAA_Template,
CAA_CmdModel, …

V1.44 Wolfgang Doll, 3S 04.06.2007 Changes after 16. Workshop: Library Placeholder

 Margit Neuss,
Wolfgang Doll, 3S

11.06.2007 English version issued, basing to German V1.44.

V1.45 Wolfgang Doll, 3S 02.08.2007 Description of additional properties

V1.46 Wolfgang Doll, 3S 16.08.2007 Rename Commanding Model to Behaviour Model,
Description “{attribute 'qualified_only'}“
Description “{attribute 'hide'}“

V1.47 Alexandra Müller, 3S 21.04.2008 Behaviour Model Documentation

V1.48 Alexandra Müller, 3S 19.06.2008 Behaviour Model Documentation updated; added
xAborted output and updated execution graphs

V1.49 Wolfgang Doll, 3S 14.05.2009 Prefixes for Interfaces, Instance of an Interfaces and
References

V1.50 Wolfgang Doll, 3S 09.02.2010 Appendix A:Library design and symbol configuration

V1.51 Wolfgang Doll, 3S 19.03.2010 Correction of some typos

V1.52 Wolfgang Doll, 3S 18.05.2011 LanguageModelAttribute clarification

Guidelines for Library Design 18.05.2011

CoDeSys Technical Workgroup
Guidelines.doc Page 29 of 29

